Relative Amenability, Amenability, and Coamenability of Coideals

Benjamin Anderson-Sackaney

Université de Caen

October 19, 2022

Framework

LCQG
$$\mathbb{G} = (L^{\infty}(\mathbb{G}), \Delta_{\mathbb{G}}, \psi_L, \psi_R)$$

- $L^{\infty}(\mathbb{G}) \subseteq \mathcal{B}(L^2(\mathbb{G}))$ is a vNa;
- $\Delta_{\mathbb{G}}$ is a vNa coproduct;
- ullet ψ_L and ψ_R are left and right Haar weights respectively.

 $L^2(\mathbb{G}) = \mathsf{GNS}$ construction from ψ_L .

Framework Cont'd

- \exists QG C^* -algebras (admit C^* -coproducts):
 - $C_0(\mathbb{G})$ reduced C^* -algebra (wot dense in $L^{\infty}(\mathbb{G})$);
 - $C_0^u(\mathbb{G})$ universal C^* -algebra.

Framework Cont'd

 \exists QG C^* -algebras (admit C^* -coproducts):

- $C_0(\mathbb{G})$ reduced C^* -algebra (wot dense in $L^{\infty}(\mathbb{G})$);
- $C_0^u(\mathbb{G})$ universal C^* -algebra.

Convolution: $f * g = (f \otimes g)\Delta$. Obtain *convolution algebras*:

- $L^1(\mathbb{G}) := L^\infty(\mathbb{G})_*$;
- $C_0^u(\mathbb{G})^*$ has identity $\epsilon^u_{\mathbb{G}}$ (counit);
- $L^1(\mathbb{G}) \leq C_0(\mathbb{G})^* \leq C_0^u(\mathbb{G})^*$.

Framework Cont'd

- \exists QG C^* -algebras (admit C^* -coproducts):
 - $C_0(\mathbb{G})$ reduced C^* -algebra (wot dense in $L^{\infty}(\mathbb{G})$);
 - $C_0^u(\mathbb{G})$ universal C^* -algebra.

Convolution: $f * g = (f \otimes g)\Delta$. Obtain *convolution algebras*:

- $L^1(\mathbb{G}) := L^\infty(\mathbb{G})_*$;
- $C_0^u(\mathbb{G})^*$ has identity $\epsilon_{\mathbb{G}}^u$ (counit);
- $L^1(\mathbb{G}) \leq C_0(\mathbb{G})^* \leq C_0^u(\mathbb{G})^*$.
- \exists injective contractive homomorphism $\lambda^u_\mathbb{G}:C^u_0(\mathbb{G})^* o \mathcal{B}(L^2(\mathbb{G})).$
- $\exists \mathsf{LCQG} \ \widehat{\mathbb{G}} \mathsf{ such that } L^{\infty}(\widehat{\mathbb{G}}) = \overline{\lambda_{\mathbb{G}}(L^{1}(\mathbb{G}))}^{wot}.$

Pontryagin duality: $\hat{\hat{\mathbb{G}}} = \mathbb{G}$.

Classical Examples

Framework Cont'd

Def: CQGs and DQGs:

- \mathbb{G} is compact if $\psi_L(1) < \infty \implies \psi_L = \psi_R = h_{\mathbb{G}} \in L^1(\mathbb{G})$.
- ullet $\widehat{\mathbb{G}}$ is discrete if \mathbb{G} is a compact.

Classical Examples

Framework Cont'd

Def: CQGs and DQGs:

- \mathbb{G} is compact if $\psi_L(1) < \infty \implies \psi_L = \psi_R = h_{\mathbb{G}} \in L^1(\mathbb{G})$.
- ullet $\widehat{\mathbb{G}}$ is discrete if \mathbb{G} is a compact.

Locally Compact Groups (LCGs)

G - LCG:

- $G = (L^{\infty}(G, m_L), \Delta_G, m_L, m_R), \Delta_G(x)(s, t) = x(st) m_L$ -a.e..
- $\widehat{G} = (VN(G), \Delta_{\widehat{G}}, \psi)$. When G is discrete, $\psi = 1_{\{e\}}$, $1_{\{e\}}(\lambda(s)) = \delta_{s,e}$.

Classical Examples

Framework Cont'd

Def: CQGs and DQGs:

- \mathbb{G} is compact if $\psi_L(1) < \infty \implies \psi_L = \psi_R = h_{\mathbb{G}} \in L^1(\mathbb{G})$.
- ullet $\widehat{\mathbb{G}}$ is discrete if \mathbb{G} is a compact.

Locally Compact Groups (LCGs)

G - LCG:

- $G = (L^{\infty}(G, m_L), \Delta_G, m_L, m_R), \Delta_G(x)(s, t) = x(st) m_L$ -a.e..
- $\widehat{G}=(VN(G),\Delta_{\widehat{G}},\psi)$. When G is discrete, $\psi=1_{\{e\}},$ $1_{\{e\}}(\lambda(s))=\delta_{s,e}.$
- $C(\widehat{G}) = C_r^*(G), C^u(\widehat{G}) = C^*(G).$

Coideals

Definition

A **coideal** of \mathbb{G} is a \mathbb{G} -invariant vN subalgebra $N \subseteq L^{\infty}(\mathbb{G})$:

$$\Delta_{\mathbb{G}}(N) \subseteq N \overline{\otimes} L^{\infty}(\mathbb{G}).$$

Write $N \leq L^{\infty}(\mathbb{G})$.

Coideals

Definition

A **coideal** of \mathbb{G} is a \mathbb{G} -invariant vN subalgebra $N \subseteq L^{\infty}(\mathbb{G})$:

$$\Delta_{\mathbb{G}}(N) \subseteq N \overline{\otimes} L^{\infty}(\mathbb{G}).$$

Write $N \leq L^{\infty}(\mathbb{G})$.

Coduals (Izumi-Longo-Popa '98)

Let $N \leq L^{\infty}(\mathbb{G})$. Then

$$\widetilde{N}:=N'\cap L^\infty(\widehat{\mathbb{G}})$$

is a coideal called the **codual** of N. We have $\widetilde{\widetilde{N}}=N$.

Coideals¹

Definition

A group-like projection is $P \in L^{\infty}(\mathbb{G})$ such that $P^* = P^2 = P$ and

$$(P\otimes 1)\Delta_{\mathbb{G}}(P)=P\otimes P.$$

Let $\mathit{GProj}(L^\infty(\mathbb{G}))=$ group-like projections. Also,

$$\widetilde{N_P} = \{x \in L^{\infty}(\mathbb{G}) : (P \otimes 1)\Delta_{\mathbb{G}}(x) = P \otimes x\} \leq L^{\infty}(\mathbb{G}).$$

Coideals

Definition

A group-like projection is $P \in L^{\infty}(\mathbb{G})$ such that $P^* = P^2 = P$ and

$$(P\otimes 1)\Delta_{\mathbb{G}}(P)=P\otimes P.$$

Let $GProj(L^{\infty}(\mathbb{G})) = \text{group-like projections}$. Also,

$$\widetilde{N_P} = \{x \in L^\infty(\mathbb{G}) : (P \otimes 1)\Delta_{\mathbb{G}}(x) = P \otimes x\} \leq L^\infty(\mathbb{G}).$$

Theorem (Kasprzak '18, Kasprzak-Khosravi-Sołtan '18)

Let \mathbb{G} be a CQG and $N \leq L^{\infty}(\mathbb{G})$. Let $PL^{2}(\mathbb{G}) = L^{2}(N)$ where $P^{2} = P^{*} = P \in \mathcal{B}(L^{2}(\mathbb{G}))$.

- $P \in \widetilde{N} \cap GProj(\ell^{\infty}(\widehat{\mathbb{G}}));$
- $\bullet \ \widetilde{N} = \widetilde{N_P}.$

Coideals

"Compact" Coideals - (..., Salmi-Skalski '09,..., Ilie-Spronk '05, Host '86, Kawada-Itô '80, Cohen '60)

• Let $Idem(C_0^u(\mathbb{G})) \subseteq C_0^u(\mathbb{G})^*$ denote the idempotent states.

If $\omega \in C_0^u(\mathbb{G})^*$ then $P_\omega := \lambda_{\mathbb{G}}^u(\omega) \in GProj(L^\infty(\widehat{\mathbb{G}}))$ (Faal-Kasprzak '17).

• $N_{\omega} = N_{P_{\omega}}$ is called a **compact quasi-subgroup**.

Quantum Subgroups

Definition: Quantum Subgroups (Vaes)

We say
$$\mathbb{H} \leq \mathbb{G}$$
 if $L^{\infty}(\widehat{\mathbb{H}}) \subseteq L^{\infty}(\widehat{\mathbb{G}})$ and $\Delta_{\widehat{\mathbb{H}}} = \Delta_{\widehat{\mathbb{G}}}|_{L^{\infty}(\widehat{\mathbb{H}})}$.

We let
$$L^{\infty}(\mathbb{H}\backslash\mathbb{G})=L^{\infty}(\widehat{\mathbb{H}})$$
.

Quantum Subgroups

Definition: Quantum Subgroups (Vaes)

We say
$$\mathbb{H} \leq \mathbb{G}$$
 if $L^{\infty}(\widehat{\mathbb{H}}) \subseteq L^{\infty}(\widehat{\mathbb{G}})$ and $\Delta_{\widehat{\mathbb{H}}} = \Delta_{\widehat{\mathbb{G}}}|_{L^{\infty}(\widehat{\mathbb{H}})}$.

We let
$$L^{\infty}(\mathbb{H}\backslash\mathbb{G})=\widehat{L^{\infty}(\widehat{\mathbb{H}})}$$
.

Let \mathbb{G} be a CQG:

Haar idempotent

$$L^{\infty}(\mathbb{H}\backslash\mathbb{G})=N_{\omega_{\mathbb{H}}}$$
 for some $\widehat{\omega_{\mathbb{H}}}\in \mathit{Idem}(C^{u}(\mathbb{G}))$. Moreover, $N_{\omega}=L^{\infty}(\mathbb{H}\backslash\mathbb{G})\iff \{a\in C^{u}(\mathbb{G}): \omega(a^{*}a)=0\} leq C^{u}(\mathbb{G})$

(Salmi-Skalski '16).

Quantum Subgroups

Definition: Quantum Subgroups (Vaes)

We say
$$\mathbb{H} \leq \mathbb{G}$$
 if $L^{\infty}(\widehat{\mathbb{H}}) \subseteq L^{\infty}(\widehat{\mathbb{G}})$ and $\Delta_{\widehat{\mathbb{H}}} = \Delta_{\widehat{\mathbb{G}}}|_{L^{\infty}(\widehat{\mathbb{H}})}$.

We let
$$L^{\infty}(\mathbb{H}\backslash\mathbb{G})=\widehat{L^{\infty}(\widehat{\mathbb{H}})}$$
.

Let \mathbb{G} be a CQG:

Haar idempotent

$$L^\infty(\mathbb{H}\backslash\mathbb{G})=\mathit{N}_{\omega_\mathbb{H}}$$
 for some $\widehat{\omega_\mathbb{H}}$ $\in \mathit{Idem}(\mathit{C}^u(\mathbb{G})).$ Moreover,

$$N_{\omega} = L^{\infty}(\mathbb{H}\backslash\mathbb{G}) \iff \{a \in C^{u}(\mathbb{G}) : \omega(a^{*}a) = 0\} \leq C^{u}(\mathbb{G})$$

(Salmi-Skalski '16). Also,

$$\ell^{\infty}(\widehat{\mathbb{H}}\backslash\widehat{\mathbb{G}}) = \widetilde{N_P} \iff P = P_{\widehat{\mathbb{H}}} \in Z(\ell^{\infty}(\widehat{\mathbb{G}}))$$

(Kalantar-Kasprzak-Skalski '16).

Examples

Classical Case

Let K be a compact group.

- $P \in GProj(VN(K)) \iff P = \int_{H} \lambda_{G}(s) dm_{H}(s), H \leq K.$
- $\omega \in Idem(C(K)) \iff \omega = m_H, H \leq K \text{ (KI '80)}.$
- $\mathbb{H} \leq K \iff \mathbb{H} = H, H \leq K$.

Examples

Classical Case

Let K be a compact group.

- $P \in GProj(VN(K)) \iff P = \int_{H} \lambda_{G}(s) dm_{H}(s), H \leq K.$
- $\omega \in Idem(C(K)) \iff \omega = m_H, H \leq K \text{ (KI '80)}.$
- $\mathbb{H} \leq K \iff \mathbb{H} = H, H \leq K$.

Classical Case

Let G be a discrete group.

- $P \in GProj(\ell^{\infty}(G)) \iff P = 1_H, H \leq G.$
- $\omega \in Idem(C^*(G)) \iff \lambda_{\widehat{G}}^u(\omega) = 1_H, \ H \leq G \ (IS'05).$
- $\mathbb{H} \leq \widehat{G} \iff \mathbb{H} = \widehat{N \backslash G}$, $N \leq G$ (not every coideal is a quotient).

Examples

Classical Case

Let K be a compact group.

- $P \in GProj(VN(K)) \iff P = \int_{H} \lambda_{G}(s) dm_{H}(s), H \leq K.$
- $\omega \in Idem(C(K)) \iff \omega = m_H, H \leq K \text{ (KI '80)}.$
- $\mathbb{H} \leq K \iff \mathbb{H} = H, H \leq K$.

Classical Case

Let G be a discrete group.

- $P \in GProj(\ell^{\infty}(G)) \iff P = 1_H, H \leq G.$
- $\omega \in Idem(C^*(G)) \iff \lambda_{\widehat{G}}^u(\omega) = 1_H, \ H \leq G \ (IS'05).$
- $\mathbb{H} \leq \widehat{G} \iff \mathbb{H} = \widehat{N \backslash G}$, $N \leq G$ (not every coideal is a quotient).

Note: not every coideal is "compact". Eg. non-standard Podleś spheres of $SU_q(2)$.

October 19, 2022

Definition

 \mathbb{G} is amenable if \exists state $L^{\infty}(\mathbb{G}) \to \mathbb{C}$ s.t. $m * f = m(\operatorname{id} \otimes f)\Delta_{\mathbb{G}} = f(1)m$, $f \in L^{1}(\mathbb{G})$.

Definition

 \mathbb{G} is amenable if \exists state $L^{\infty}(\mathbb{G}) \to \mathbb{C}$ s.t. $m * f = m(id \otimes f)\Delta_{\mathbb{G}} = f(1)m$, $f \in L^{1}(\mathbb{G})$.

A ucp map $\Psi: L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ is \mathbb{G} -equivariant if $(\Psi \otimes id)\Delta = \Delta \circ \Psi$.

Definition

 \mathbb{G} is amenable if \exists state $L^{\infty}(\mathbb{G}) \to \mathbb{C}$ s.t. $m * f = m(id \otimes f)\Delta_{\mathbb{G}} = f(1)m$, $f \in L^{1}(\mathbb{G})$.

A ucp map $\Psi: L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ is \mathbb{G} -equivariant if $(\Psi \otimes id)\Delta = \Delta \circ \Psi$.

Definition

 $N \leq L^{\infty}(\mathbb{G})$ is **relatively amenable** if there exists a \mathbb{G} -equivariant ucp map $\Psi: L^{\infty}(\mathbb{G}) \to N$.

 $N \leq L^{\infty}(\mathbb{G})$ is **amenable** if there exists a \mathbb{G} -equivariant ucp map $L^{\infty}(\mathbb{G}) \to N$, $\Psi|_{N} = \mathrm{id}_{N}$.

Given $\mu \in C_0^u(\mathbb{G})^*$, let $L_\mu : L^\infty(\mathbb{G}) \to L^\infty(\mathbb{G})$ denote the associated left multiplier (normal \mathbb{G} -equivariant map).

Remark

- For $\omega \in Idem(C_0^u(\mathbb{G}))$, $L_\omega : L^\infty(\mathbb{G}) \to N_\omega$ is a normal \mathbb{G} -equivariant ucp map such that $L_\omega|_{N_\omega} = \mathrm{id}_{N_\omega}$.
- When \mathbb{G} is a CQG and $\omega \in L^1(\mathbb{G}) \cap Idem(C_0^u(\mathbb{G}))$, then N_ω is finite dimensional (Sołtan-Kasprzak '20).

Note: when $\widehat{\mathbb{H}} \leq \widehat{\mathbb{G}}$, $\ell^1(\widehat{\mathbb{H}}) \subseteq \ell^1(\widehat{\mathbb{G}})$. Then, $\widehat{\mathbb{H}}$ -invariant means $m * \varphi = \varphi(1)m$ for all $\varphi \in \ell^1(\widehat{\mathbb{H}})$.

Note: when $\widehat{\mathbb{H}} \leq \widehat{\mathbb{G}}$, $\ell^1(\widehat{\mathbb{H}}) \subseteq \ell^1(\widehat{\mathbb{G}})$. Then, $\widehat{\mathbb{H}}$ -invariant means $m * \varphi = \varphi(1)m$ for all $\varphi \in \ell^1(\widehat{\mathbb{H}})$.

Classical Case (Caprace-Monod '14)

 $H \leq G$. TFAE

- H is amenable;
- $\ell^{\infty}(H\backslash G)$ is amenable;
- **3** $\ell^{\infty}(H\backslash G)$ is relatively amenable;
- \bullet $\ell^{\infty}(G)$ has an H-invariant state.

Note: when $\widehat{\mathbb{H}} \leq \widehat{\mathbb{G}}$, $\ell^1(\widehat{\mathbb{H}}) \subseteq \ell^1(\widehat{\mathbb{G}})$. Then, $\widehat{\mathbb{H}}$ -invariant means $m * \varphi = \varphi(1)m$ for all $\varphi \in \ell^1(\widehat{\mathbb{H}})$.

Classical Case (Caprace-Monod '14)

 $H \leq G$. TFAE

- H is amenable;
- **3** $\ell^{\infty}(H\backslash G)$ is relatively amenable;
- \bullet $\ell^{\infty}(G)$ has an *H*-invariant state.

Theorem (Kalantar-Kasprzak-Skalski-Vergnioux '20)

TFAE:

- $lackbox{}\widehat{\mathbb{H}}$ is amenable;
- $\ell^{\infty}(\widehat{\mathbb{H}}\backslash\widehat{\mathbb{G}})$ is relatively amenable;
- $\exists \ \widehat{\mathbb{H}}$ -invariant state $\ell^{\infty}(\widehat{\mathbb{G}}) \to \mathbb{C}$.

Open Problem

Let G be a locally compact group. Does relative amenability of $L^{\infty}(H\backslash G)$ imply amenability of $L^{\infty}(H\backslash G)$?

Denote the weak* closed $\widehat{\mathbb{G}}$ -invariant operator system

$$M_P = \{x \in \ell^{\infty}(\widehat{\mathbb{G}}) : (P \otimes 1)\Delta_{\widehat{\mathbb{G}}}(x)(P \otimes 1) = P \otimes x\} \supseteq \widetilde{N_P}.$$

Denote the weak* closed $\widehat{\mathbb{G}}$ -invariant operator system

$$M_P = \{x \in \ell^{\infty}(\widehat{\mathbb{G}}) : (P \otimes 1)\Delta_{\widehat{\mathbb{G}}}(x)(P \otimes 1) = P \otimes x\} \supseteq \widetilde{N_P}.$$

Given $x \in \ell^{\infty}(\mathbb{G})$, denote xf, fx s.t. (xf)(y) = f(yx) and (fx)(y) = f(xy).

Theorem (A-S)

① $\widetilde{N_P}$ is relatively amenable iff there exists a state $m: \ell^{\infty}(\widehat{\mathbb{G}}) \to \mathbb{C}$ s.t. m*(fP) = f(P)m for all $f \in \ell^1(\widehat{\mathbb{G}})$.

Denote the weak* closed $\widehat{\mathbb{G}}$ -invariant operator system

$$M_P = \{x \in \ell^{\infty}(\widehat{\mathbb{G}}) : (P \otimes 1)\Delta_{\widehat{\mathbb{G}}}(x)(P \otimes 1) = P \otimes x\} \supseteq \widetilde{N_P}.$$

Given $x \in \ell^{\infty}(\mathbb{G})$, denote xf, fx s.t. (xf)(y) = f(yx) and (fx)(y) = f(xy).

Theorem (A-S)

- ① $\widetilde{N_P}$ is relatively amenable iff there exists a state $m: \ell^{\infty}(\widehat{\mathbb{G}}) \to \mathbb{C}$ s.t. m*(fP) = f(P)m for all $f \in \ell^1(\widehat{\mathbb{G}})$.
- ② M_P is amenable iff there exists a state $m: \ell^{\infty}(\widehat{\mathbb{G}}) \to \mathbb{C}$ s.t. m*(PfP) = f(P)m and $m(P) \neq 0$ for all $f \in \ell^1(\widehat{\mathbb{G}})$.

Denote the weak* closed $\widehat{\mathbb{G}}$ -invariant operator system

$$M_P = \{x \in \ell^{\infty}(\widehat{\mathbb{G}}) : (P \otimes 1)\Delta_{\widehat{\mathbb{G}}}(x)(P \otimes 1) = P \otimes x\} \supseteq \widetilde{N_P}.$$

Given $x \in \ell^{\infty}(\mathbb{G})$, denote xf, fx s.t. (xf)(y) = f(yx) and (fx)(y) = f(xy).

Theorem (A-S)

- ① $\widehat{N_P}$ is relatively amenable iff there exists a state $m: \ell^{\infty}(\widehat{\mathbb{G}}) \to \mathbb{C}$ s.t. m*(fP) = f(P)m for all $f \in \ell^1(\widehat{\mathbb{G}})$.
- ② M_P is amenable iff there exists a state $m: \ell^{\infty}(\widehat{\mathbb{G}}) \to \mathbb{C}$ s.t. m*(PfP) = f(P)m and $m(P) \neq 0$ for all $f \in \ell^1(\widehat{\mathbb{G}})$.
- If there exists a state $m: \ell^{\infty}(\widehat{\mathbb{G}}) \to \mathbb{C}$ s.t. m*(fP) = f(P)m and $m(P) \neq 0$ for all $f \in \ell^{1}(\widehat{\mathbb{G}})$ then M_{P} is amenable .

Question: starting with a unital cb \mathbb{G} -equivariant map $\Psi: L^{\infty}(\mathbb{G}) \to N$, can we obtain one that is ucp?

Question: starting with a unital cb \mathbb{G} -equivariant map $\Psi: L^{\infty}(\mathbb{G}) \to N$, can we obtain one that is ucp?

Let A be a Banach algebra that has a bounded approximate identity (eg. is unital). Let $I \subseteq A$ be a closed right ideal. Denote

$$I^{\perp} = \{ \varphi \in A^* : \varphi|_I = 0 \}.$$

Theorem (Forrest '87)

I has a bounded left approximate identity (blai) if and only if there is a left A-module map $\Psi:A\to I^\perp$ such that $\Psi|_{I^\perp}=\mathrm{id}_{I^\perp}.$

Note: $m \in \ell^{\infty}(\widehat{\mathbb{G}})^*$ is $\ell^1(\widehat{\mathbb{G}})P$ -invariant iff $\epsilon_{\widehat{\mathbb{G}}} - m \in \ell^{\infty}(\widehat{\mathbb{G}})^*$ is a left identity for the closed right ideal $(\widetilde{N_P})_{\perp} \subseteq \ell^1(\widehat{\mathbb{G}})$. Then we can obtain a blai for $(\widetilde{N_P})_{\perp}$ in $(\mathbb{C}1)_{\perp} \supseteq (\widetilde{N_P})_{\perp}$.

Note: $m \in \ell^{\infty}(\widehat{\mathbb{G}})^*$ is $\ell^1(\widehat{\mathbb{G}})P$ -invariant iff $\epsilon_{\widehat{\mathbb{G}}} - m \in \ell^{\infty}(\widehat{\mathbb{G}})^*$ is a left identity for the closed right ideal $(\widetilde{N_P})_{\perp} \subseteq \ell^1(\widehat{\mathbb{G}})$. Then we can obtain a blai for $(\widetilde{N_P})_{\perp}$ in $(\mathbb{C}1)_{\perp} \supseteq (\widetilde{N_P})_{\perp}$.

Working a little harder, we obtain...

Theorem (Caprace-Monod '14)

Let G be a discrete group. $H \leq G$ is amenable iff $\ell^{\infty}(H \backslash G)_{\perp}$ has a blai.

Note: $m \in \ell^{\infty}(\widehat{\mathbb{G}})^*$ is $\ell^1(\widehat{\mathbb{G}})P$ -invariant iff $\epsilon_{\widehat{\mathbb{G}}} - m \in \ell^{\infty}(\widehat{\mathbb{G}})^*$ is a left identity for the closed right ideal $(\widetilde{N_P})_{\perp} \subseteq \ell^1(\widehat{\mathbb{G}})$. Then we can obtain a blai for $(\widetilde{N_P})_{\perp}$ in $(\mathbb{C}1)_{\perp} \supseteq (\widetilde{N_P})_{\perp}$.

Working a little harder, we obtain...

Theorem (Caprace-Monod '14)

Let G be a discrete group. $H \leq G$ is amenable iff $\ell^{\infty}(H \backslash G)_{\perp}$ has a blai.

Theorem (A-S)

Let $\mathbb G$ be a CQG. $M_P\subseteq \ell^\infty(\widehat{\mathbb G})$ is amenable iff $(M_P)_\perp$ has a blai.

Definition G-LCQG

 \mathbb{G} is coamenable if $C_0^u(\mathbb{G}) = C_0(\mathbb{G}) \iff \epsilon_{\mathbb{G}} \in C_0(\mathbb{G})^*$.

Definition G-LCQG

 \mathbb{G} is coamenable if $C_0^u(\mathbb{G}) = C_0(\mathbb{G}) \iff \epsilon_{\mathbb{G}} \in C_0(\mathbb{G})^*$.

Tomatsu '06: A CQG $\mathbb G$ is coamenable $\iff \widehat{\mathbb G}$ is amenable.

Definition G-LCQG

 \mathbb{G} is **coamenable** if $C_0^u(\mathbb{G}) = C_0(\mathbb{G}) \iff \epsilon_{\mathbb{G}} \in C_0(\mathbb{G})^*$.

Tomatsu '06: A CQG \mathbb{G} is coamenable $\iff \widehat{\mathbb{G}}$ is amenable.

Classical Case

Let H < G. Then

H is amenable $\iff \widehat{H}$ is coamenable (Hulanicki '64-'66) $\iff 1_H \in C(\widehat{G})^*.$

KKSV'20 defined coamenability of $\mathbb{H}\backslash\mathbb{G}$. This was extended by A-S to arbitrary coideals (of CQGs).

KKSV'20 defined coamenability of $\mathbb{H}\backslash\mathbb{G}$. This was extended by A-S to arbitrary coideals (of CQGs).

Given $P \subseteq GProj(\ell^{\infty}(\widehat{\mathbb{G}}))$, let

$$C(N_P) = \overline{\lambda_{\widehat{\mathbb{G}}}(\ell^1(\widehat{\mathbb{G}})P)} \subseteq C(\mathbb{G}) \text{ and } C^u(N_P) = \overline{\lambda_{\widehat{\mathbb{G}}}(\ell^1(\widehat{\mathbb{G}})P)} \subseteq C^u(\mathbb{G}).$$

Note $\overline{C(N_P)}^{wot} = N_P$ (Kasprzak '18) and $C(N_P)^* \subseteq C^u(N_P)^*$.

KKSV'20 defined coamenability of $\mathbb{H}\backslash\mathbb{G}$. This was extended by A-S to arbitrary coideals (of CQGs).

Given $P \subseteq GProj(\ell^{\infty}(\widehat{\mathbb{G}}))$, let

$$C(N_P) = \overline{\lambda_{\widehat{\mathbb{G}}}(\ell^1(\widehat{\mathbb{G}})P)} \subseteq C(\mathbb{G}) \text{ and } C^u(N_P) = \overline{\lambda_{\widehat{\mathbb{G}}}(\ell^1(\widehat{\mathbb{G}})P)} \subseteq C^u(\mathbb{G}).$$

Note $\overline{C(N_P)}^{wot} = N_P$ (Kasprzak '18) and $C(N_P)^* \subseteq C^u(N_P)^*$.

Proposition / Definition of Coamenability

The following are equivalent:

- \exists a state $\epsilon_P \in C(N_P)^*$ such that $\epsilon_P = \epsilon_{\mathbb{G}}^u|_{C^u(N_P)}$;
- $C(N_P) = C^u(N_P)$.

Theorem (A-S)

 N_{ω} is coamenable $\iff \omega \in C(\mathbb{G})^*$.

Theorem (A-S)

 N_{ω} is coamenable $\iff \omega \in C(\mathbb{G})^*$.

Note: we have that $\omega|_{C^u(N_\omega)} = \epsilon_{\mathbb{G}}^u|_{C^u(N_\omega)}$.

Theorem (A-S)

 N_{ω} is coamenable $\iff \omega \in C(\mathbb{G})^*$.

Note: we have that $\omega|_{C^u(N_\omega)} = \epsilon_{\mathbb{G}}^u|_{C^u(N_\omega)}$.

Remark

- If $\widehat{\mathbb{H}} \leq \widehat{\mathbb{G}}$ then \mathbb{H} is coamenable iff $L^{\infty}(\mathbb{H})$ is coamenable.
- $L^{\infty}(\mathbb{H}\backslash\mathbb{G})$ is coamenable iff $\omega_{\mathbb{H}}\in C(\mathbb{G})^*$ can be easily obtained from work of KKSV'20.

Theorem (A-S)

If N_{ω} is coamenable then $M_{P_{\omega}}$ is amenable.

Theorem (A-S)

If N_{ω} is coamenable then $M_{P_{\omega}}$ is amenable.

When
$$P=P_{\widehat{\mathbb{H}}}\in Z(\ell^\infty(\widehat{\mathbb{G}}))$$
, $M_{1_{\widehat{\mathbb{H}}}}=\widetilde{N_{1_{\widehat{\mathbb{H}}}}}$.

Theorem (A-S)

If N_{ω} is coamenable then $M_{P_{\omega}}$ is amenable.

When
$$P=P_{\widehat{\mathbb{H}}}\in Z(\ell^\infty(\widehat{\mathbb{G}}))$$
, $M_{1_{\widehat{\mathbb{H}}}}=\widetilde{N_{1_{\widehat{\mathbb{H}}}}}$.

Corollary (A-S)

Let $\widehat{\mathbb{H}} \leq \widehat{\mathbb{G}}$. TFAE:

- $\mathbf{O} \widehat{\mathbb{H}}$ is amenable;
- $\ell^{\infty}(\widehat{\mathbb{H}}\backslash\widehat{\mathbb{G}})$ is amenable;
- 0 $\ell^{\infty}(\widehat{\mathbb{H}}\backslash\widehat{\mathbb{G}})_{\perp}$ has a blai.

Open Problems

Determine if TFAE:

- Relative amenability of N_P ;
- 2 Amenability of N_P ;
- **3** Amenability of M_P ;
- **1** Coamenability of N_P .

Open Problems

Determine if TFAE:

- Relative amenability of $\widetilde{N_P}$;
- 2 Amenability of $\widetilde{N_P}$;
- **3** Amenability of M_P ;
- **4** Coamenability of N_P .

Positive Answer Summary

- 2. \implies 1. (by definition).
- 4. \Longrightarrow 3. when $P = P_{\omega}$.
- 1. \iff 2. \iff 3. \iff 4 when $P = P_{\widehat{\mathbb{H}}} \in Z(\ell^{\infty}(\widehat{\mathbb{G}}))$.
- ullet 4. \Longrightarrow 1. when $P=P_{\omega_{\mathbb{H}}}$ and $\omega_{\mathbb{H}}$ is tracial (to be discussed next).

Tracial States

Given a C^* -algebra $A \subseteq \mathcal{B}(\mathcal{H})$, a **tracial state** is a state $\tau : A \to \mathbb{C}$ such that $\tau(ab) = \tau(ba)$.

Notation: T(A) = tracial states on A.

Tracial States

Given a C^* -algebra $A \subseteq \mathcal{B}(\mathcal{H})$, a **tracial state** is a state $\tau : A \to \mathbb{C}$ such that $\tau(ab) = \tau(ba)$.

Notation: T(A) = tracial states on A.

Examples

• $A = C_r^*(G)$ and $\tau = 1_N$ where $N \leq G$ is amenable.

Eg. $1_{\{e\}} = h_{\widehat{G}}$, $1_{R_a(G)}$, where $R_a(G)$ is the amenable radical.

Tracial States

Given a C^* -algebra $A \subseteq \mathcal{B}(\mathcal{H})$, a **tracial state** is a state $\tau : A \to \mathbb{C}$ such that $\tau(ab) = \tau(ba)$.

Notation: T(A) = tracial states on A.

Examples

• $A = C_r^*(G)$ and $\tau = 1_N$ where $N \leq G$ is amenable.

Eg. $1_{\{e\}} = h_{\widehat{G}}$, $1_{R_a(G)}$, where $R_a(G)$ is the amenable radical.

• $A = C(\widehat{\mathbb{G}})$, $h_{\widehat{\mathbb{G}}}$ not always tracial. In fact, $T(C(\mathbb{G})) = \emptyset$ is possible (eg. the non-Kac U_F^+ , O_F^+).

Tracial States

Given a C^* -algebra $A \subseteq \mathcal{B}(\mathcal{H})$, a **tracial state** is a state $\tau : A \to \mathbb{C}$ such that $\tau(ab) = \tau(ba)$.

Notation: T(A) = tracial states on A.

Examples

- $A = C_r^*(G)$ and $\tau = 1_N$ where $N \subseteq G$ is amenable.
 - Eg. $1_{\{e\}} = h_{\widehat{G}}$, $1_{R_a(G)}$, where $R_a(G)$ is the amenable radical.
- $A = C(\widehat{\mathbb{G}})$, $h_{\widehat{\mathbb{G}}}$ not always tracial. In fact, $T(C(\mathbb{G})) = \emptyset$ is possible (eg. the non-Kac U_F^+ , O_F^+).

Definition

 \mathbb{G} of **Kac type** if the Haar state $h_{\mathbb{G}}$ is tracial.

Definition

A C^* -algebra is **nuclear** if $A \otimes_{min} B = A \otimes_{max} B$ for every C^* -algebra B.

Theorems

Let \mathbb{G} be a LCQG.

• If G is a discrete group, then G is amenable iff $C_r^*(G)$ is nuclear (Lance '73).

Definition

A C^* -algebra is **nuclear** if $A \otimes_{min} B = A \otimes_{max} B$ for every C^* -algebra B.

Theorems

Let \mathbb{G} be a LCQG.

- If G is a discrete group, then G is amenable iff $C_r^*(G)$ is nuclear (Lance '73).
- If G is a locally compact group, then G is amenable iff $C_r^*(G)$ is nuclear and admits a tracial state (Ng '15).

Definition

A C^* -algebra is **nuclear** if $A \otimes_{min} B = A \otimes_{max} B$ for every C^* -algebra B.

Theorems

Let \mathbb{G} be a LCQG.

- If G is a discrete group, then G is amenable iff $C_r^*(G)$ is nuclear (Lance '73).
- If G is a locally compact group, then G is amenable iff $C_r^*(G)$ is nuclear and admits a *tracial state* (Ng '15).
- \mathbb{G} is coamenable iff $C(\mathbb{G})$ is nuclear and admits a $\widehat{\mathbb{G}}$ -invariant state (Crann '17, Ng-Viselter '17, Bédos-Tuset '03).

Definition

A C^* -algebra is **nuclear** if $A \otimes_{min} B = A \otimes_{max} B$ for every C^* -algebra B.

Theorems

Let \mathbb{G} be a LCQG.

- If G is a discrete group, then G is amenable iff $C_r^*(G)$ is nuclear (Lance '73).
- If G is a locally compact group, then G is amenable iff $C_r^*(G)$ is nuclear and admits a tracial state (Ng '15).
- \mathbb{G} is coamenable iff $C(\mathbb{G})$ is nuclear and admits a $\widehat{\mathbb{G}}$ -invariant state (Crann '17, Ng-Viselter '17, Bédos-Tuset '03).
- When \mathbb{G} is Kac type and compact, a state is tracial iff it is $\widehat{\mathbb{G}}$ -invariant (NV'17, KKSV'20).
- \Longrightarrow when $\mathbb G$ is Kac type and compact, $\mathbb G$ is coamenable iff $C(\mathbb G)$ is nuclear.

Tracial Idempotents

• Let $\omega \in Idem(C^u(\mathbb{G}))$

$$\omega \in \mathcal{T}(\mathcal{C}(\mathbb{G})) \iff \omega = \omega_{\mathbb{H}}, \ \mathbb{H} \ \text{is Kac \& } \mathbb{H} \backslash \mathbb{G} \ \text{is coamenable}.$$

Using convolution powers and compactness:

$$T(C(\mathbb{G})) \neq \varnothing \iff Idem(C(\mathbb{G})) \cap T(C(\mathbb{G})) \neq \varnothing.$$

Tracial Idempotents

• Let $\omega \in Idem(C^u(\mathbb{G}))$

$$\omega \in \mathcal{T}(\mathcal{C}(\mathbb{G})) \iff \omega = \omega_{\mathbb{H}}, \ \mathbb{H} \ \text{is Kac \& } \mathbb{H} \backslash \mathbb{G} \ \text{is coamenable}.$$

Using convolution powers and compactness:

$$T(C(\mathbb{G})) \neq \varnothing \iff Idem(C(\mathbb{G})) \cap T(C(\mathbb{G})) \neq \varnothing.$$

Theorem (A-S)

Let \mathbb{G} be a CQG. \mathbb{G} is coamenable iff $C(\mathbb{G})$ is nuclear and has a tracial state.

Proof

Idea: reduce to Kac type case.

 \mathbb{G} is coamenable $\implies C(\mathbb{G})$ is nuclear is due to BT'03 and $\epsilon_{\mathbb{G}} \in C(\mathbb{G})^*$ is tracial.

Proof

Idea: reduce to Kac type case.

 \mathbb{G} is coamenable $\implies C(\mathbb{G})$ is nuclear is due to BT'03 and $\epsilon_{\mathbb{G}} \in C(\mathbb{G})^*$ is tracial.

Assume $C(\mathbb{G})$ is nuclear and admits a tracial state.

 $T(C(\mathbb{G})) \neq \varnothing \implies \exists \ \omega_{\mathbb{H}} \in Idem(C(\mathbb{G})) \cap T(C(\mathbb{G})), \ \mathbb{H} \leq \mathbb{G} \ (\mathbb{H} \ is \ Kac \ type \ and \ \mathbb{H} \setminus \mathbb{G} \ is \ coamenable).$

Proof

Idea: reduce to Kac type case.

 \mathbb{G} is coamenable $\implies C(\mathbb{G})$ is nuclear is due to BT'03 and $\epsilon_{\mathbb{G}} \in C(\mathbb{G})^*$ is tracial.

Assume $C(\mathbb{G})$ is nuclear and admits a tracial state.

 $T(C(\mathbb{G})) \neq \varnothing \implies \exists \ \omega_{\mathbb{H}} \in Idem(C(\mathbb{G})) \cap T(C(\mathbb{G})), \ \mathbb{H} \leq \mathbb{G} \ (\mathbb{H} \ is \ Kac \ type \ and \ \mathbb{H} \setminus \mathbb{G} \ is \ coamenable).$

 $\mathbb{H}\backslash\mathbb{G}$ is coamenable $\Longrightarrow C(\mathbb{H})=C(\mathbb{G})/I$ (KKSV'20) $\Longrightarrow C(\mathbb{H})$ is nuclear $\Longrightarrow \mathbb{H}$ is coamenable (NV'17).

Proof

Idea: reduce to Kac type case.

 \mathbb{G} is coamenable $\implies C(\mathbb{G})$ is nuclear is due to BT'03 and $\epsilon_{\mathbb{G}} \in C(\mathbb{G})^*$ is tracial.

Assume $C(\mathbb{G})$ is nuclear and admits a tracial state.

 $T(C(\mathbb{G})) \neq \varnothing \implies \exists \ \omega_{\mathbb{H}} \in Idem(C(\mathbb{G})) \cap T(C(\mathbb{G})), \ \mathbb{H} \leq \mathbb{G} \ (\mathbb{H} \ is \ Kac \ type \ and \ \mathbb{H} \setminus \mathbb{G} \ is \ coamenable).$

 $\mathbb{H}\backslash\mathbb{G}$ is coamenable $\Longrightarrow C(\mathbb{H})=C(\mathbb{G})/I$ (KKSV'20) $\Longrightarrow C(\mathbb{H})$ is nuclear $\Longrightarrow \mathbb{H}$ is coamenable (NV'17).

 \mathbb{H} is coamenable and $\mathbb{H}\backslash\mathbb{G}$ is coamenable $\Longrightarrow \mathbb{G}$ is coamenable (KKSV'20).

Classical Results

- $C_r^*(G)$ is simple \iff no amenable residually normal subgroups. (Kennedy '20)
- $C_r^*(G)$ has unique trace \iff no amenable normal subgroups $(R_a(G) = \{e\})$. (Breuillard-Kalantar-Kennedy-Ozawa '14, Kalantar-Kennedy '14)

Note: $\ell^{\infty}(R_a(G)\backslash G)\subseteq \ell^{\infty}(N\backslash G)$ whenever $N \subseteq G$ and is amenable.

Note: $\ell^{\infty}(R_a(G)\backslash G)\subseteq \ell^{\infty}(N\backslash G)$ whenever $N \leq G$ and is amenable.

Normal Quantum Subgroups

Let \mathbb{G} be a LCQG. $\mathbb{H} \subseteq \mathbb{G}$ is **normal** when

$$\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{H}\backslash\mathbb{G}))\subseteq L^{\infty}(\mathbb{H}\backslash\mathbb{G})\overline{\otimes}L^{\infty}(\mathbb{H}\backslash\mathbb{G}).$$

 $\mathbb{H} \text{ is normal iff } \widehat{\mathbb{H} \backslash \mathbb{G}} \trianglelefteq \widehat{\mathbb{G}}.$

Note: $\ell^{\infty}(R_a(G)\backslash G)\subseteq \ell^{\infty}(N\backslash G)$ whenever $N \leq G$ and is amenable.

Normal Quantum Subgroups

Let \mathbb{G} be a LCQG. $\mathbb{H} \subseteq \mathbb{G}$ is **normal** when

$$\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{H}\backslash\mathbb{G}))\subseteq L^{\infty}(\mathbb{H}\backslash\mathbb{G})\overline{\otimes}L^{\infty}(\mathbb{H}\backslash\mathbb{G}).$$

 \mathbb{H} is normal iff $\widehat{\mathbb{H}\backslash\mathbb{G}} \supseteq \widehat{\mathbb{G}}$.

Furstenberg Coideal

• $\exists \mathbb{G}_F \leq \mathbb{G}$ such that $\mathbb{G}_F \leq \mathbb{H} \leq \mathbb{G}$ whenever $\ell^{\infty}(\widehat{\mathbb{H}}) \subseteq \ell^{\infty}(\widehat{\mathbb{G}})$ is relatively amenable. (KKSV'20)

Note: $\ell^{\infty}(R_a(G)\backslash G)\subseteq \ell^{\infty}(N\backslash G)$ whenever $N \leq G$ and is amenable.

Normal Quantum Subgroups

Let \mathbb{G} be a LCQG. $\mathbb{H} \subseteq \mathbb{G}$ is **normal** when

$$\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{H}\backslash\mathbb{G}))\subseteq L^{\infty}(\mathbb{H}\backslash\mathbb{G})\overline{\otimes}L^{\infty}(\mathbb{H}\backslash\mathbb{G}).$$

 \mathbb{H} is normal iff $\widehat{\mathbb{H}\backslash\mathbb{G}} \supseteq \widehat{\mathbb{G}}$.

Furstenberg Coideal

- $\exists \mathbb{G}_F \leq \mathbb{G}$ such that $\mathbb{G}_F \leq \mathbb{H} \leq \mathbb{G}$ whenever $\ell^{\infty}(\widehat{\mathbb{H}}) \subseteq \ell^{\infty}(\widehat{\mathbb{G}})$ is relatively amenable. (KKSV'20)
- \exists a unique largest normal amenable quantum subgroup $R_a(\widehat{\mathbb{G}}) \leq \widehat{\mathbb{G}}$ $\Longrightarrow \ell^{\infty}(\widehat{\mathbb{G}_F}) \subseteq \ell^{\infty}(R_a(\widehat{\mathbb{G}}) \backslash \widehat{\mathbb{G}}).$ (KKSV'20)

Note: $\ell^{\infty}(R_a(G)\backslash G)\subseteq \ell^{\infty}(N\backslash G)$ whenever $N \subseteq G$ and is amenable.

Normal Quantum Subgroups

Let \mathbb{G} be a LCQG. $\mathbb{H} \subseteq \mathbb{G}$ is **normal** when

$$\Delta_{\mathbb{G}}(L^{\infty}(\mathbb{H}\backslash\mathbb{G}))\subseteq L^{\infty}(\mathbb{H}\backslash\mathbb{G})\overline{\otimes}L^{\infty}(\mathbb{H}\backslash\mathbb{G}).$$

 \mathbb{H} is normal iff $\widehat{\mathbb{H}\backslash\mathbb{G}} \supseteq \widehat{\mathbb{G}}$.

Furstenberg Coideal

- $\exists \mathbb{G}_F \leq \mathbb{G}$ such that $\mathbb{G}_F \leq \mathbb{H} \leq \mathbb{G}$ whenever $\ell^{\infty}(\widehat{\mathbb{H}}) \subseteq \ell^{\infty}(\widehat{\mathbb{G}})$ is relatively amenable. (KKSV'20)
- \exists a unique largest normal amenable quantum subgroup $R_a(\widehat{\mathbb{G}}) \trianglelefteq \widehat{\mathbb{G}}$ $\Longrightarrow \ell^{\infty}(\widehat{\mathbb{G}_F}) \subseteq \ell^{\infty}(R_a(\widehat{\mathbb{G}}) \backslash \widehat{\mathbb{G}})$. (KKSV'20)
- $\mathbb{G}_F \leq \mathbb{H} \leq \mathbb{G}$ whenever $\mathbb{H} \backslash \mathbb{G}$ is coamenable and \mathbb{H} is Kac type. (A-S)

Corollary (A-S)

Let $\mathbb G$ be a CQG and $\mathbb H \leq \mathbb G$ be Kac type. If $\mathbb H \backslash \mathbb G$ is coamenable then $\ell^\infty(\widehat{\mathbb H})$ is relatively amenable.

Proof

If $\mathbb{H}\backslash\mathbb{G}$ is coamenable then $\ell^{\infty}(\widehat{\mathbb{G}_F})\subseteq \ell^{\infty}(\widehat{\mathbb{H}})$.

For a CQG \mathbb{G} , we let $\mathbb{G}_{Kac} \leq \mathbb{G}$ denote the largest quantum subgroup of Kac type (Sołtan '05 (attributed to Vaes)).

Advances

• \mathbb{G} Kac type: $\mathbb{G}_F = \mathbb{G} \implies C(\mathbb{G})$ has a unique trace. (KKSV'20)

For a CQG \mathbb{G} , we let $\mathbb{G}_{Kac} \leq \mathbb{G}$ denote the largest quantum subgroup of Kac type (Sołtan '05 (attributed to Vaes)).

Advances

- \mathbb{G} Kac type: $\mathbb{G}_F = \mathbb{G} \implies C(\mathbb{G})$ has a unique trace. (KKSV'20)
- ullet G Kac type: $C(\mathbb{G})$ has a unique trace $\implies R_a(\widehat{\mathbb{G}}) = \{e\}$. (KKSV'20)

For a CQG \mathbb{G} , we let $\mathbb{G}_{Kac} \leq \mathbb{G}$ denote the largest quantum subgroup of Kac type (Sołtan '05 (attributed to Vaes)).

Advances

- \mathbb{G} Kac type: $\mathbb{G}_F = \mathbb{G} \implies C(\mathbb{G})$ has a unique trace. (KKSV'20)
- \mathbb{G} Kac type: $C(\mathbb{G})$ has a unique trace $\implies R_a(\widehat{\mathbb{G}}) = \{e\}$. (KKSV'20)
- $\mathbb{G}_F \setminus \mathbb{G}$ is coamenable: $C(\mathbb{G})$ has a tracial state $\iff \mathbb{G}_F$ is of Kac type. (A-S)

For a CQG \mathbb{G} , we let $\mathbb{G}_{Kac} \leq \mathbb{G}$ denote the largest quantum subgroup of Kac type (Sołtan '05 (attributed to Vaes)).

Advances

- \mathbb{G} Kac type: $\mathbb{G}_F = \mathbb{G} \implies C(\mathbb{G})$ has a unique trace. (KKSV'20)
- \mathbb{G} Kac type: $C(\mathbb{G})$ has a unique trace $\implies R_a(\widehat{\mathbb{G}}) = \{e\}$. (KKSV'20)
- $\mathbb{G}_F \setminus \mathbb{G}$ is coamenable: $C(\mathbb{G})$ has a tracial state $\iff \mathbb{G}_F$ is of Kac type. (A-S)
- * $\mathbb{G}_F \setminus \mathbb{G}$ is coamenable: $C(\mathbb{G})$ has a unique idempotent tracial state $\iff \mathbb{G}_F = \mathbb{G}_{Kac}$. (A-S)
- * $\mathbb{G}_F \setminus \mathbb{G}$ and $(\mathbb{G}_{Kac})_F \setminus \mathbb{G}_{Kac}$ are coamenable: $C(\mathbb{G})$ has a unique tracial state $\iff \mathbb{G}_F = \mathbb{G}_{Kac}$ and $C^{\sigma}(\mathbb{G}_{Kac}) = C(\mathbb{G}_{Kac})$. (A-S)

Open Problem

Is $\mathbb{G}_F \backslash \mathbb{G}$ coamenable?

Open Problem

Is $\mathbb{G}_F \setminus \mathbb{G}$ coamenable?

Assume $\mathbb{G}_F \backslash \mathbb{G}$ is coamenable. Let $\mathbb{H} \leq \mathbb{G}$ be Kac type. Then

$$\mathbb{G}_F \leq \mathbb{H} \iff \ell^{\infty}(\widehat{\mathbb{G}_F}) \subseteq \ell^{\infty}(\widehat{\mathbb{H}})$$
$$\iff \ell^{\infty}(\widehat{\mathbb{H}}) \text{ is relatively amenable}$$

Open Problem

Is $\mathbb{G}_F \setminus \mathbb{G}$ coamenable?

Assume $\mathbb{G}_F \backslash \mathbb{G}$ is coamenable. Let $\mathbb{H} \leq \mathbb{G}$ be Kac type. Then

$$\mathbb{G}_F \leq \mathbb{H} \iff \ell^{\infty}(\widehat{\mathbb{G}_F}) \subseteq \ell^{\infty}(\widehat{\mathbb{H}})$$
$$\iff \ell^{\infty}(\widehat{\mathbb{H}}) \text{ is relatively amenable}$$

and

$$\mathbb{G}_F \leq \mathbb{H} \iff L^{\infty}(\mathbb{H}\backslash\mathbb{G}) \subseteq L^{\infty}(\mathbb{G}_F\backslash\mathbb{G})$$
$$\iff \mathbb{H}\backslash\mathbb{G} \text{ is coamenable.}$$

Open Problem

Is $\mathbb{G}_F \setminus \mathbb{G}$ coamenable?

Assume $\mathbb{G}_F \backslash \mathbb{G}$ is coamenable. Let $\mathbb{H} \leq \mathbb{G}$ be Kac type. Then

$$\mathbb{G}_F \leq \mathbb{H} \iff \ell^{\infty}(\widehat{\mathbb{G}_F}) \subseteq \ell^{\infty}(\widehat{\mathbb{H}})$$
$$\iff \ell^{\infty}(\widehat{\mathbb{H}}) \text{ is relatively amenable}$$

and

$$\mathbb{G}_F \leq \mathbb{H} \iff L^{\infty}(\mathbb{H}\backslash\mathbb{G}) \subseteq L^{\infty}(\mathbb{G}_F\backslash\mathbb{G})$$
$$\iff \mathbb{H}\backslash\mathbb{G} \text{ is coamenable.}$$

If \mathbb{G} is Kac type and $\mathbb{G}_F \setminus \mathbb{G}$ is coamenable then $C(\mathbb{G})$ has a unique trace $\Longrightarrow \mathbb{G}_F = \mathbb{G}$.

Thank you!

Thank you!